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Entropy is related to the frequency of states for individual particles. 
Taking the Ising lattice as an example, a local state for an individual spin 
is defined by the orientation of the spin and of its neighbors. The ratio 
of the frequencies of two local states involved in a spin-flipping con- 
figurational transition is related to an entropy change. Implementation is 
by computer simulation. A stochastic process is used to construct an initial 
lattice configuration, corresponding to state of known entropy. This con- 
figuration is subsequently relaxed to a desired equilibrium state, with the 
help of a ("uniform Metropolis") Monte Carlo spin flipping and the 
attendant entropy change is calculated from the sequence of frequency 
ratios for all transitions. The calculation is approximate since it treats a 
process that can be described by a hypothetical sequence of states at 
internal equilibrium, which cannot be true for a relaxation at finite rate. 
Nonetheless, the results obtained have been quite accurate. The theory, 
therefore, provides an additional method for measuring the entropy of 
systems simulated with the help of a computer. It also indicates a practical 
way for bridging the Boltzmann entropy of individual particle states 
(which Jaynes has shown to be incorrect, in its original form, for strongly 
interacting particles), to the Gibbs entropy of N-particle configurations. 
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1. I N T R O D U C T I O N  
Monte Carlo sampling of successive configurations for model N-particle 
systems leads to a direct measurement of average microscopic quantities, 
like interaction energy and enthalpy. However, entropy, hence free energy, 
cannot be found in that manner. Several methods have been proposed. 

(a) "Thermodynamic integration." One starts from a configuration 
corresponding to an equilibrium state of known free energy and simulates 
a reversibly slow relaxation to a new equilibrium. The change in free energy 
is found from the reversible work, which can be computed from the simula- 
tion data. The method is time consuming because of the required slowness 
and runs into difficulty when phase transition is encountered on the way. (1~ 

(b) The method of Salsburg e t  al.  ~2~ This computes free energy from the 
average reciprocal Boltzmann weight factor. The method is impractical 
since the main contribution to the average is from configurations of low 
statistical weight (large reciprocal weight factor), which for large N are im- 
possible to sample. 

(c) "Multistage sampling" of Valleau and Card5 a~ One strives to find 
the absolute value of the configurational space belonging to given energy, 
hence the configurational integral and free energy. To begin with, the space 
belonging to the high energy levels is found in the random ensemble, the 
total space of which is known. The space belonging to lower energy levels is 
then found by proceeding to weighted ensembles (of unknown total space), 
in overlapping stages. The method is likewise impractical for large N, when 
the variation of configurational space with energy is exceedingly steep. 

(d) The "stochastic models" method proposed by Alexandrowicz. (~) 
A typical equilibrium configuration is constructed with the help of an 
optimized stochastic process which allots N particles to a lattice, one after 
another, in succession. Entropy is computed from the (product) probability 
of the stepwise process. The main objection is that the method is inherently 
approximate. 

(e) The "discrimination" method described subsequently by 
Alexandrowicz. ~5,6> This computes the discrimination of a stochastic re- 
laxation process from the ratio of the forward and reverse transition prob- 
abilities for the sequence of steps. In the limit of a reversible process, dis- 
crimination becomes equal to (minus) the entropy change. The method is 
essentially equivalent to the thermodynamic integration; its advantage lies 
in the direct use of stochastic quantities instead of derived thermodynamic 
data. 

The present theory tries to relate entropy to a quantity measured micro- 
scopically for individual particles, notably to numbers giving the frequency 
of what we call "local states" (what are called "stochastic components" 
elsewhere)/7~ These are best explained by an example: Each spin of a linear 
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Ising lattice is attributed to one of six local states, depending on its orientation 
and on the orientation of its two neighbors. As a system's configurations are 
transformed one into another with the help of a stochastic process, the 
frequencies of the local states vary and this variation is related to entropy 
changes. The variation of the frequencies is easily measured for a Monte 
Carlo relaxation and from this point of view the present theory constitutes 
an addition to the aforementioned computer methods. 

Another aspect of the theory is the following. Entropy is here related 
to the frequency (or probability) of local states for individual particles. This 
resembles the Boltzmann ( "H- theorem")  expression for entropy, which 
refers to the probability of states of single particles, as opposed to the Gibbs 
expression, which refers to the probability of N-particle configurations in the 
phase space. As Jaynes (8) has very convincingly demonstrated, the Boltzmann 
expression is in serious error for strongly interacting particles. We shall see, 
however, that the present theory leads to quite accurate results for the Ising 
lattice which consists of strongly interacting particles. This is because our 
local states are not defined for an individual particle taken alone, but for a 
particle together with its interacting neighbors. In this sense the present 
theory indicates a practical way of bridging the Boltzmann and Gibbs 
approaches to entropy. 

2. THEORY 

The theory is illustrated for the square Ising lattice consisting of N spins. 
Spin orientations are cr~ = + 1 and neighbor spins i and j interact with an 
energy e = -(hcrfl. Ten local states a can be distinguished according to the 
orientation cr~ and the energy e= of a central spin, as displayed in Table I. 

Table I. The Ten Local States a for a Square Ising Lattice a 

a Diagram a,~ ~,/J 

1 and2 +~-+~ + -++ 1 a n d - 1  - 4 a n d 4  + + 

3and4 +~+~  +++ 1 a n d - 1  - 2 a n d 2  

5and6 - + + ~ - ~ +  l a n d - 1  0and0 

7and8 _u247 1 a n d - i  2 a n d - 2  

9and l0  + ~-_2-  1 and -1  4 a n d - 4  

Columns 2-4, respectively, list the diagram for a pair of conjugated 
states, the orientation of the central spin, and the interaction energy 
of the central spin with its neighbors. 
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A set of ten numbers ms specifies the frequency of such local states in a 
particular lattice configuration. Clearly, 

10 

ms = N (1) 
a = l  

Furthermore, 

and 
(all spins) 

e~ = E (3) 
(all  spins) 

where M and E are, respectively, the magnetization (net orientation) and the 
interaction energy of a lattice configuration. 

Consider the lattice to be in a hypothetical equilibrium with a (non- 
existent) bath at temperature T* in a (nonexistent) applied magnetic field 
H*. Take the transition, due to the flip of the central spin, from one local 
state (a) to its conjugate (c~'). The associated changes in the interaction 
energy, entropy, and magnetization of the lattice are, respectively, related by 

8E~,~, = T* 8S~,~, + H* 8M~,~, (4) 

The transition probabilities in the equilibrium ensemble at T* and H* are 
denoted by F~,., and  F. ,~.  Because of the Boltzmann distribution, (5,m we 
have 

F~,s,/F.,,~ = exp[-(E~,  - H*M~,) /T* + (E~ - H*M~)/T*]  (5) 

Or, in view of Eq. (4), 

F.,~,/F~.~ = e x p ( -  8Ss,~,) (6) 

Take a particular lattice configuration, with m~ spins in local state ~. Any 
of these may give rise to an c~, ~' transition. The expectation value for % c~' to 
occur somewhere on the lattice, or the instantaneous expectation value of the 
~, ~' "f low," is therefore proportional to m~F.,~,. The expectation value of 
the opposite flow is proportional to m~.F~,,~. The invariance of the average 
values of E and of M (and of any other lattice property related to transitions 
among the local states) implies that on the average the two flows should be 
equal one to another. For large enough N, the law of large numbers (negli- 
gibly small relative fluctuations) implies that the cancellation of flows should 
hold for particular lattice configurations as well. Hence 

m.F~,~, = m~,F~.,.; N -+ oo (7) 

This permits transition probabilities, in the hypothetical ensemble at T* 
and H*, to be substituted by the measurable frequencies. Thus, Eqs. (6) 
and (7) combined lead to 

8S~,~, = log(mdm~, ); N ~ oo (8) 
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Suppose the lattice configurations are transformed one into another 
with the help of some definite stochastic process, which flips the spins--one 
at a t ime--in a sequence of steps t '  = 1, 2, 3 ..... t. The sequence of steps 
defines a sequence of the c~, c~' transitions. The associated change in the entropy 
of our system 2xS0,t then can be computed on the basis of Eq. (8), from the 
sequence of all frequency ratios m~/rn~, registered during the process. Noting 
that c~ and c~' belong to successive instants of time, we write 

ASo,t = E l~ + 1)]; N -+ oo (9) 
t ' = 0  

The contribution at each step is from the frequency ratio of the two states, 
~z(t) and ~'(t + 1), involved in the transition. However, it will be noted that, 
because of the overlap of neighbor local states on the lattice, each such spin- 
flipping transition is accompanied by a simultaneous transformation of four 
more local states, not necessarily belonging to c~ (all these changes are quite 
conveniently recorded in a computer-simulated process). Furthermore, it 
is important to make a clear distinction between the actual stochastic process, 
giving rise to the c~, c~' transitions, on the one hand, and, on the other, the 
associated sequence of hypothetical transient (or "local in t ime") equilibria 
at T* and H*, discussed before in Eqs. (5)-(7). Transition probabilities for 
the latter have been denoted by F~,~,. It is worth emphasizing that these 
hypothetical quantities do not appear in our final equation for ASo,t. Transi- 
tion probabilities for the actual spin-flipping process, which incidentally need 
not be reversibly slow, but can correspond to a fairly abrupt relaxation (see 
later), are denoted byf~,~, in what follows. 

Equation (9) for ASo.t permits one to calculate the entropy of our lattice 
when the initial entropy is known. The procedure is as follows. An initial 
lattice configuration is constructed with the help of a definite stochastic 
process which fixes spin orientations ~ by means of transition probabili- 
ties p f  in a sequence of steps i = 1, 2, 3,..., N. The construction deter- 
mines the initial interaction energy E ~ magnetization M ~ and probability of 
the starting configuration 

N 
po = 1-[ p O (I0) 

/ = 1  

The law of large numbers once again leads to a substantial simplification. 
For large enough N the (log of) the probability of a particular configuration 
is essentially equal to the average value associated with our initial stochastic 
construction 

l o g P  ~ = ( l ogP~  N - + o o  ( t l )  

Statistical mechanics, however, relates entropy to - (log P )  of an assignment 
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of configurational probabilities (such assignment need not correspond to any 
equilibrium state(8~). In k units, 

S = - (log P> (12) 

Equations (t0)-(12) give 

N 

SO = - E l~176 N--> oo (13) 
4 = 1  

The initial construction is followed by the stochastic spin-flipping 
process of Eq. (9), giving AS0.t. Clearly S O + ASo.~ is the lattice entropy at 
time t, which need not correspond to an equilibrium state. However, to 
facilitate comparison to known results, we shall consider the entropy of 
systems at equilibrium. Suppose, therefore, that after time t the spin-flipping 
process converges upon a specified equilibrium state at temperature T and 
in the absence of a magnetic field, an example being provided by any 
"Metropol is"  Monte Carlo relaxation5 ~-1I~ A direct microscopic measure- 
ment and averaging of configurations for t '  ~ t allows us to find the equilib- 
rium values E(T) and M(T). The present theory says that S(T)can be esti- 
mated from a similarly direct microscopic measurement. Thus Eqs. (9) and 
(13) lead to 

N 1-i 

S(T) = S O + AS0.t = - ~ lbgp, ~ + ~ Iog[m~(e.,/m~x~.+l,]; 
i = l  t ' = O  

N--> oo (14) 

The two stochastic processes, the fixing of initial spin orientations and the 
subsequent spin flipping, have been executed with the help of a computer; 
actual examples are described in what follows. 

3. RESULTS A N D  D I S C U S S I O N  

The initial stochastic construction produced lattice configurations that 
were partially magnetized, but with no interspin order. Thus the N-spin 
orientations were fixed, one after another, with the help of a constant (un- 
conditional) transition probability 

p~ = 1) = pO(+) = 1 - p O ( _ ) ;  1 ~< i ~< N (15) 

The following approximate equalities hold for large N [cf. Eqs. (2), (3), and 
(13)]: 

MO/N ~_ pO(+) _ pO(_) (16) 

EO/N ~_ _2[/,o(+) _ pO(_)]2 (17) 

SO/N ,.~ _pO(+) logpO(+) _ pO(_) logpO(_) (18) 
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The initial construction corresponds therefore to starting from a hypothetical 
equilibrium at T* --> oe and H*/T* = const. Upon its completion, the spin- 
flipping process convergent upon equilibrium at zero magnetic field and at a 
specified reciprocal "Ising temperature" J/kT was initiated. The lattice 
spins were flipped in an ordered succession and the N-step cycle was repeated 
over and over again (altogether about 300-500 cycles were performed). It is 
recalled that the sufficient condition for a Metropolis process to converge 
upon J/kT (at zero field) is for the transition probabilities of any pair of 
conjugated transitions to obey ~5'9~ 

f~,~,/f~,,~ = e x p [ - ( E ~ , -  E~)/kT] (19) 

Equation (19) leaves the transition probabilities undetermined to within a 
multiplicative coefficient, which can make the rates different for various 
conjugated ~, ~'. Such is indeed the case with the so-called "symmetrical"~l~ 
and "asymmetrical ''(11~ Metropolis methods. For the present purpose it is 
important that the relaxation proceeds, as far as possible, through states of 
local internal equilibrium. It seems preferable therefore to define a Metropolis 
method which corresponds to a uniform rate of energy exchange with the 
external reservoir, for the various conjugated ~, a'. One possibility is to define 
a stochastic process which treats all lattice spins simultaneously, with the 
transition probability for each flip proportional to exp(-E~,/kT). Another 
possibility, adopted here, is to retain the convenient algorithm which treats 
the lattice spins one after another, but to normalize the transition probabilities 
of the various ~, ~' by a common constant, corresponding to the lowest 
energy level. Thus our "un i fo rm"  Metropolis method defines 

f~,~, = e x p [ - ( E ~ , -  Em~n)/kT ] (20) 

where the choice 

Em~n = - 4 J  (21) 

assures that f~,~, ~< 1 on a square lattice. The results obtained for a lattice N = 
200 x 200, for several values of the reciprocal equilibrium temperature 
J/kT and with each equilibrium attained from a few different starting con- 
figurations, are presented in Table II [much less accurate results for S(T) 
have been obtained in trial experiments utilizing the symmetrical and asym- 
metrical Metropolis methods]. Columns 2-4 list the initial values of pO(+), 
M~ and S~ [see Eqs. (16) and (18)]. Columns 5 and 6 list the values of 
ASo.t/N and of S(T)/N as computed with the help of the present theory 
[Eqs. (9) and (14)]. The deviations from Onsager's theoretical values St~ (see, 
e.g., Ref. 12) are listed in the last column of the table. It is concluded that the 
results are quite accurate, especially when entropy increases and when the 
entropy contents of the initial and of the equilibrium states are not very 
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Tab le  II. 

Z. A l e x a n d r o w i c z  

C o m p u t e r  Resul ts  o f  E n t r o p y  C a l c u l a t i o n s  f o r  an N - -  200  X 200  
La t t i ce  = 

J/kT pO(+) MO/N~z SO/N ASo,t /N S(T)/N [Sth -- S(T)]/N 

0.6 0.95 0.901 0.197 -0.133 0.064 0.0003 
0.90 0.801 0.324 -0.264 0.061 0.0037 
0.80 0.601 0.500 -0.454 0.046 0.0182 
0.70 0.395 0.613 -0.595 0.018 0.0471 

0.5 0.90 0.801 0.324 -0.172 0.153 0.0005 
0.80 0.601 0.500 -0.354 0.146 0.0069 

0.4 0.80 0.601 0.500 - 0.067 0.433 0.0039 
0.50 -0.001 0.693 -0.176 0.417 0.0195 

0.3 0.95 0.901 0.197 0.382 0.579 0.0004 
0.80 0.601 0.500 0.080 0.580 -0.0005 
0.50 -0.001 0.693 -0.124 0.577 0.002 s 

a Column 1 lists the reciprocal Ising temperature of the equilibrium state. Columns 
2-4, respectively, give the probability of a + spin during initial construction and the 
resultant magnetization and entropy S o of the initial lattice. Columns 5-7, respectively, 
give the entropy change ASo,t due to the relaxation, the entropy of the equilibrium 
state calculated from S o + ASo.t, and the deviation of the calculated value from 
Onsager's theory. 

different. The results are less accurate for J/kT = 0.40, which is near the 
critical value J/kTc -- 0.414. (Attempts  to study T still nearer to Tc are 
hampered by the extremely slow at tainment o f  equilibrium.) 

The following remarks should be added. Our  method is not  expected to 
yield the precise Value o f  S(T), since the assumption of  local equilibrium at 
transient T* and H *  can be strictly valid only for a reversibly slow process. 
This certainly is not  the case with the presently described Metropolis  Monte  
Carlo process, which corresponds to a T-jump type o f  relaxation. Hence the 
accuracy achieved is indeed pleasantly surprising ! This seems to be due to the 
fact that  short-range interspin equilibration is quite rapid, whereas the slow, 
long-range equilibration has a relatively small effect on first derivatives o f  
free energy, like entropy. It  is remarked further that  a marked dependence 
o f  the ent ropy upon  a spatial reorganization o f  an initial lattice configuration 
(breakdown of  initial ordering o f  spins along lattice diagonals, for  example) 
would render insufficient the present choice o f  ten local particle states, based 
on E~ and ~ alone. In a way this difficulty corresponds to the well-known 
indeterminacy in the definition of  entropy ( " G i b b s '  p a r a d o x " ;  see also 
Jaynes (8~ on the " a n t h r o p o m o r p h i c "  nature o f  entropy). In  terms of  Eqs. 
(4)-(5) it would require an addit ion of  hypothetical  internal work terms other 
than H* 8M~,~,. The accuracy of  the t reatment  should improve as the 
definition o f  local states is made dependent on more  and more  spins; in the 
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extreme one would pass to the (exact) Gibbs treatment of  entropy in the N- 
particle phase space. 

Despite these limitations it is concluded that the present theory provides 
a readily accessible and reasonably accurate method for expressing entropy 
by the frequency of states for individual particles. The computer execution 
of the method can be carried out for lattice models of any dimensionality 
and of  any number of allowable "spin states," provided of  course that 
interspin interactions E~ are duly specified. 
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